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The game-theoretic pt~rsuit--evasion problem of one pursuer and two evaders is considered. It is assumed that one of the evaders 
must leave the game (disappear) at some time; however, neitber this time nor the leaving evader is Imown in advance. The dynamim 
of all the objects can be described by the equations of the weft-known I~_acs__ problem of the "game of two cars" [1] subject to 
conditions of restricted manoeuvrability of the objects. The minimum time difference between the pursuer and the evader 
remaining in the game is the payoff of the ~ame. Under certain assumptions, relating the parameters of the objects and their 
initial positions, the optimal position strategies for the pursuer and two evaders are constructed. The formal description of the 
problem follows that ccpnsidered in [2]. The approach proposed in [3] is developed. Similar problems were considered in [ 10-16]. 
© 1997 Elsevier Science Ltd. All rights reserved. 

1. EQUATIONS OF MOTION AND PAYOFF FUNCTIONAL 

Suppose that objects P (the pursuer) and E and E1 (the evaders) move with constant velocity in the 
X O Y  plane (Fig. it). The equations of motion of the objects and the constraints on their control 
interactions resemble those in the well-known problem of "the game of two cars" [1] and have the 
form 

"ri = Vi sine/, 5'i = V/cosOi, 6 i = (V i I Ri)tOi, Iq0ilg I (1,1) 

Here Vi is the constant velocity, R i is the minimum radius of curvature of the trajectory, 0i is the angle 
between the OY a~s and the vector V/, ¢Pi is the scalar control function, Ci is the centre of curvature of 
the trajectory, and i ffi 1 corresponds to P, i = 2 to E and i = 3 to El. 

It is assumed that 

V2 = V3, R2=R3 (1.2) 

We will assume that the following restricted manoeuvrability condition is satisfied for system (1.1) 
(801 being sut~ciently small) 

oi = o ° + soi (1.3) 

where O° is the value of Oi at the initial instant of time t = to. 
Under this assmnption, P, E and El will move according to the system of linear equations 

-~, = ~ (s ine  ° + z, cose°),  5', = v~ (cose° -z ,  s ine°)  
(1.4) 

~i =(Vi IRi)9i, Iq~il~ 1 (zi = H i )  

The game is comidered in a time interval [to, T], where T is not fixed and, in particular, can b~ infinite. 
0 0 The initial positior~s of P, E and E1 are given by the vectors {xi, yi, z/°} (i = 1, 2, 3). We will assume that 

: = : ,  yO=yO, co=co (1.5) 
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when t = to. 
It is assumed that one of  the evaders (it is unknown in advance which one) suddenly disappears from 

the game at an instant of  time t =t* unknown in advance, where to ~ t* < T. Starting from this time a 
pursuit-evasion game between the pursuer and the remaining evader begins. The time t* is a parameter 
of the problem under consideration. The solution of the problem depends explicitly on t*, which is 
reflected in (7.1)-(7.3). 

The basic payoff functional is given by 

Yl = m i n  {[x i ( t )  - x I ( t ) ]  2 + [ Y i ( t ) -  Yi ( t ) ]  2 }~ 
t * ~ t < T  

(1.6) 

The intermediate functional in the initial game has the form 

Y2 = m a x . { I x ~ ( T l ) -  x l ( T l ) l ,  Ixt(T2)-xt(T2)l} 
Yk(Ti)= yl(Tt), Yt(T2)= yI(T2) 

(1.7) 

where k and I can take only the following two pairs of  values depending on the initial positions of  E 
and E1 and on 0°: either k = 2,1 = 3 or k = 3, l = 2. 

In (1.6) i is equal to two or three depending on which of the evaders disappears from the game at 
t = t* (it is either equal to two if E remains in the game or to three if E1 remains). In (1.7) the times 
T = Tj (j = 1, 2) are defined according to [3] as the instants of  contact between the extreme points 
xi(Tj) (i = 2 , j  = 1; i = 3 , j  = 2 or i = 2 , j  = 2; i = 3 , j  = 1) of the attainability domains of  E and E1 
andthe  straight finesy = yI(T1) andy = yl(T2), respectively. It is assumed that the attainability domains 
of  E and E1 correspond to T = Tj ( j  = 1, 2). 

It is also assumed that the relations between V/, Ri, 0 ° (i = 1, 2, 3) satisfy the covering conditions 
from [3] of the form 

o, lo  Vj >t cosOi + 2y21sinOil/ 

~2(v2 cos0 ° -¢m)/  & + ¢](¢~ cos0 ° - v2)/R2 <~ o 

if 0 ~ 0 ° ~< rd2 or  3rd2 < 0 ° ~ 2g 

(1.8) 

(1.9) 

v~ 2 (v2 cos  0 ° - v, ) / R~ + v ]  (v2 - v~ cos  0 ° ) / R2 ~ 0 (1.10) 

ifrd2 ~ 0 ° ~< 3 g / 2 .  
The pursuer P aims to minimize the basic and auxiliary functionais ¥1 and "/2, while the evaders try 

to maximize them. 
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2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

For the differential game (1.1)-(1.7) in which the parameters of  P, E and E1 satisfy the coveting 
conditions (CC~ (1.8~-(1.10), it is required to construct optimal positional strategies U = U(t, X.,  Y., 
Z.): [to, T] × R ° )~: R ° × R 3 --* {tpl} for the pursuer P and 1I/= V/(t, X.,  Y., Z.):  [to, T] x R 3 x R 3 x 
R3 -'* {q~l} (i = 2, 3) for the evaders E and E1, which realize a saddle point of  the game in the sense of  
the functional (1.6). 

H e r e X .  = {Xl, yl, z l } ,Y .  = {x2,Y2,Z2},Z. = {x3,y3,z3}, {9/} = {gie  RI: I 9/[  ~< 1} (i = 1, 2,3).  

Remark 1. The strategy of one of the evaders will be determined only in the interval [to, t*) according to the 
setting of the problem. However, as will be shown below, the choice of the strategy for each of the two evaders in 
[to, t*) will have a si~gnificant effect on the value of T1. 

Remark 2. In (1.11)-(2.7) the condition for a saddle point to exist in a "little game" [2] is satisfied. 

3. A U X I L I A R Y  C O N S T R U C T I O N S .  C H A N G E  OF C O O R D I N A T E S .  
A T T A I N A B I L I T Y  D O M A I N S  

To simplify the constructions below we will change the reference system as in [3], placing the origin 
at the initial position of  P and directing the OY axis along the velocity vector of  P and the OX axis to 
the right of  V1. The positions o r E  and E 1 (which coincide at t = to) are given by a vector (x*,y*, 0") in 
the new reference system, where the components of the vector can be computed by means of formulae 
(4.1) in [3]. In wha~t follows, for simplicity we shall omit the asterisk on the symbols for the actual positions 
of the objects and replace the symbols for the control functions q~i (i = 1, 2, 3) by u for 1", and by v and 
vl for E and E1, respectively. 

In the new reference system the equations of motion (1.4) of P, E and E1 take the form 

x l=V,  zl, y t = V i ,  z t = ( V t l R i ) u ,  l u l ~ t  (3.1) 

"~i = V2 (sin 0 ° + zi cos 0 °), ~, = V 2 (cos 0 ° - z i sin 0 ° ) (3.2) 

~i=(V21R2)ui, luil~ 1 

Expressions (1.6) and (1.7) for the payoff functional remain unchanged. It was shown in [3, 4] that 
the attainability domains G(i)(t, T) of P, E and E 1 will be rectilinear intervals ri(t , T) perpendicular to 
Vi (i = 1, 2, 3) (Fig. 2) with 

t~(t ,T)=(Vi(T-t))  21(2R i) 

Typical positions of  P, E and E1 at the initial time t = to and their attainability domains at a time 
T > to are shown'i~n Fig.  2. 

Assuming the control functions of  P, E and E 1 to be constant in the time interval [to, T], we can 
integrate (3.1) and (3.2) and find the coordinates (xi, Yi, zi) (i = 1, 2, 3) of these objects when t = T 
given that they are; at positions {to, x °, y0, z 0} respectively, at t = to. The corresponding values are given 
in [3] (formulae (5.3) and (5.4)). 

4. C O N D I T I O N S  F O R  C O V E R I N G  T H E  A T T A I N A B I L I T Y  D O M A I N S  OF 
E A N D  E1 BY T H E  A T T A I N A B I L I T Y  D O M A I N  OF P 

According to (L5), when t = to the positions of the two evaders E and E1 coincide at the point 
{to, x o, yO, z o} = {to, x °, y0, z0}. Suppose that P is at {tl, xl, Yl, zl} at time t = tl, where t o < t 1 ~ t*,  w h i l e  

E and E1 are at {tt, x2,Y2, z2} and {tl, x3,Y3, z3}, respectively. 
For these positions we consider the attainability domains of P, E and E 1 at times 7"1 > tl and T2 > 

0 0 tl corresponding to an arbitrary value of Oi, where O < 8i < n/2. 
We denote the extreme points of the attainability domains of P, E and E 1 corresponding to the control 

interactions u = ":1, v = _+1, vl = _+1 and times T = Tj (j  = 1, 2) byAl(Tj), BI(Tj);A2(Tj), B2(Tj) and 
A3(Tj), Bs(Tj) respectively (Fig. 3). 
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Suppose that for T = T1 the geometric coordinates of one of the extreme points of the attainability 
domain of El, for example, A2(T1) {x2(T1),y2(Yl)} lie on the straight liney = yl(T1) and the inequality 

X2 (TI) - Xl (TII) ~ 0 (4.1) 

holds, where xz(T1) is the abscissa of the point A2(T1) in the attainability domain o r e  1 andxl(T1) is the 
abscissa of the point A1(7"1) in the attainability domain of P closest to A2(T1). 

Next, suppose that an extreme point B3(T2) = {x3(T2),y3(T2)} of the attainability domain of E belongs 
to the straight line y = Yl(T2) at T = T2 (Fig. 3) and the inequality 

x3(T2)- xlfT2) ~> 0 (4.2) 

holds, where x3(T2) is the abscissa of the point B3(T2) in the attainability domain of E and BI(T2) is the 
abscissa of the point B3(T2) in the attainability domain of P closest to B3(T2). 

We shall assume that at least one of inequalities (4.1) and (4.2) is strict. 
Such a configuration of the attainability domains of P, E and E1 at T = T1 and T = 7"2 whose positions 

ar t  = tl are given above will be referred to as a situation of covering the attainability domain of P by 
those of E and E1 in a "one against two" game. The conditions relating the parameters of P, E and E1 
for which the attainability domains realize a "situation of covering" will be called the covering conditions 
(CC) in a "one against two" game. These conditions are similar to the CC in [3] and have the form 
(1.8)--(1.10). 

5. AUXILIARY P R O B L E M  1 

We will first consider the problem of constructing an optimal positional strategy (OPS) of P, E and 
E1 on [to, t*) whose payoff functional is given by (1.6). 

Formulation of the Auxiliary Problem 1. For the differential game (1.1)-(1.6) in which the parameters 
and the initial positions of P, E and E1 satisfy the CC in a "one against two" game we need to construct 
the OPS 

U l =UI(t,X,,Y,,Z,): [to,t*) xR3xR3xR3 "~{q~t} 
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of the pursuer P and the OPSs 

ViI=ViI(t,X.,Y.,Z.): [to,t*)xR3×R3×RS-o{~pl} ( i=2,3) 

of the evaders E and E1 in a time interval [to, t*), where t = t* is unknown in advance, which realize a 
saddle point in the game (1.1)--(1.5), (1.7). 

From the definkion of a situation of covering for P, E and E1 it follows that for some position {t, X., 
Y., Z.} of the game (1.1)--(1.6) for which the CC are satisfied, the following inequalities hold, relating 
the ordinates of the points of the attainability domains 

Yl (TI) = Ytc (Ti), yl(T2)=yt(T2) (5.1) 

where either k = 2,1 =3 or k = 3, 1 = 2, so Tj (] = 1, 2) is satisfied according to [3]. 
It can be shown that only the x coordinates xi(Tj) (i = 1, 2, 3; j = 1, 2) of the extreme points of the 

attainability domains of P, E and E1 at the times T = Tj (j = 1, 2) when these points lie on the straight 
linesy = yl(Tj) (] = 1, 2) are important for constructing the strategies U 1 and V~ (i = 2, 3). 

We introduce thEe notation 

s{=si(t, Tj)=xi(Tj)-xl(Tj), i=2,3; j = l , 2  (5.2) 

Consider strategies U 1 = UI(t,X., IT., Z.) and ~ = ~(t ,X. ,  Y., Z.) = ~(t)  of the form 

I sign(s~ +st2), if Is~l~els~l 

U'(t'X*'Y*'Z*)=[[-1,+I], if Isll=ls~l 
(5.3) 

Vi I -- V i l ( t ) = ( - l )  i, i=2,3, t ~[to,t* ) (5.4) 

where the subscripts k and l can only take the following two pairs of values depending on the initial posi- 
tion of E and E1 mad the angle 00: either k = 2, l = 3 or k = 3, 1 = 2. 

Now suppose that P, E and E1 in the auxiliary game (1.1)--(1.5), (1.7) move subject to the strategies 
(5.3) and (5.4). The positions of the game under consideration for to ~< t ~< t* such that 

4 = -s,  (5.5) 

form a focal surface $1 similar to that considered in [10, 11]. The functional T2 may increase as P 
moves on Sr  However, it can be shown that the strategy UI(t,X., Y., Z.) defined by (5.3) guarantees 
that this growth will be the slowest possible. Those positions of the game (1.1)--(1.5), (1.7) for which 
(5.5) is not satisfied belong to the regular domain of the game under consideration. It can be shown 
that the programming strategies given by (5.4) are the desired optimal strategies of E and E1 in [to, t*). 
This follows from the fact that the strategies (5.4) for any admissible strategies of P lead to the quickest 
violation of the sittmtion of covering in a "one against two" game and provide the ma~dmum of T2 with 
respect to V/(i = 2, 3). 

Taking the above discussion into account and analysing how the attainability domains of P, E and E1 
change with time imder the strategies U 1 and 1~/(i = 2, 3), it can be shown that strategies (5.3) and 
(5.4) provide a solution of Auxiliary Problem 1 and satisfy the equality 

~a~ minT2 =mijn max Y2 =Y~ v~,v~ (5.6) 

6. AUXILIARY PROBLEM 2 

At t = t* the game (1.1)-(1.5), (1.7) turns into a pursuit--evasion game (1.1)-(1.6) between the pursuer 
and the evader remaining in the game (E or E 0. 

We introduce the notation 

l~l(t'x)=sk(t'Tl), F'2(t,x)=sl(t, T2) (6.1) 

wherex = (X., Y., Z.} and, as in (5.3), the subscripts k and I can take only two pairs of values depending 



396 K.A.  Zemskov and A. G. Pashkov 

on the initial positions of E and E1 and on k = 2, 1 = 3: either 0 ° or k = 3, 1 = 2. 
Let x *  = {)t"., I t . ,  Z ' .}  be the coordinates of P, E and E 1 at the time t = t* of termination of the 

auxiliary game 1 and let T = Tj (] = 1, 2) in (6.1) be computed for the position { i f , x*}  in accordance 
with [3]. It can be shown that the strategies (5.3) and (5.4) in the game (1.1)-(1.6) ensure that 

e I(t*,x*) = e2(t*,x*) = ~'2 (6.2) 

Formulation o f  Auxiliary Prob/em 2. For the differential game (1.1)--(1.6) in which the initial positions 
of P and E (or El)  coincide with the final positions of P, E and E1 at t = t* we need to construct in 
[t °, 7) an OPS 

U 2 = U 2 (t, X, ,  x i, Yi, zi): [t*, T) x R 3 × R 3 ---> {q)t } 

of the pursuer P and a positional strategy 

• ,Vi 2 = ~.2(t ,X, ,xi ,Yi ,z i):  [ t * , T ) × R  3 × R  3 --> {~i} 

of the evader remaining in the game (i = 2 i rE  remains in the game and i = 3 if E1 remains) providing 
a saddle point in the game (1.1)-(1.6). 

For t = t* the game (1.1)-(1.5), (1.7) aLrm intO problem (1.1)-(1.6) with one pursuer e and one evader 
E or El, considered in [3]. In this game the strategy of the remaining evader (E or El)  must be a positional 
strategy, because such a strategy guarantees the best result for the evader and enables it to "punish" 
the pursuer for any deviations from its optimal strategy. 

As in the  construction of the OPS (5.3) and (5.4) for P, E and E1 in Auxiliary Problem 1 it can be 
shown that the desired positional strategies of P and E (El) in Auxiliary Problem 2 have the form 

Isign(s~ +s/2), if Is~l~Is/21 

U2(t 'X* 'x i 'Y i 'Z i )  = [[-1,+11, if Is~l=ls~l (6.3) 

] (-l)qsign(s~ +s2),,  if Isll#Is~l 
V,. 2 (t, X. ,  xi, Yi '  Zi ) = (6.4) 

[[-1,+1], if Isll=ls2i I 

In ~6.3) and (6.4) i = 2 if E remains in the game and i = 3 if El  remains. In (6.4) q = 2 if 
0 ~< 0~ < X/2 or 3rd2 < 0° ~< 2re and q = I if rd2 < 0°i ~< 3rd2. 

We assume that P, E (El) move, respectively, according to the strategies U 2 and V2/in the interval 
[t*, 7). The positions of the game (1.1)--(1.6) for which the equality 

Is21=ls31 (6.5) 

holds for t* ~< t < T from a singular set $2, which is a dispersive surface. 
Auxiliary Problem 2 was solved in [3]. It can be shown that 

vi vi 
(6.6) 

holds for Auxiliary Game 2. From the solution of this problem it follows that U 2 and V2guarantee that 
the result ~ of the game will be 

"/; =¥2 =¥* (6.7) 

7. O P T I M A L  S T R A T E G I E S  OF P AND E (El )  IN THE O R I G I N A L  G A M E  

The positional strategies U(t, X., Y., Z.)  and V/(t, X., Y., Z.)  (i = 2 or 3) representing the solution 
of the original game (1.1)-(1.7) can be constructed on the basis of  the solution of Auxiliary Problems 
1 and 2 and have the form 
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I um(t,X.,K,Z.) for to <~t<t* 

U(t'X*'K'Z*)=[U2(t,X.,xi,yi,zl) for t* ~ t < T  
(7.1) 

~V/l(t) for t o < ~ t < t *  , i=2,3 
Vi(t'X*'Y*'Z*)=[Vi2(t,X.,xl,yi,zi) for t*<~t<T, i=2 or 3 

(7.2) 

where 0 'n and V"j~ (m = 1, 2; i = 2, 3) are given by (5.3), (6.3) and (5.4), (6.4), respectively. 
Suppose that for some position {t,X., Y., Z.} = {t,x} of the game (1.1)-(1.7) the CC are satisfied 

in the "one against two" game. We assume that P, E and E1 move according to strategies (7.1) and 
(7.2). Suppose that P, E and E1 are at positions {t*, X' . ,  Y**, Z**} = {t*, x*} at the time t = t* (to ~< 
t* < 7") (unknowrL in advance) when one of the evaders (E or El) disappears from the game. Then it 
follows from (6.2) and (6.7) that the optimal solution e(t, x) of the original game (1.1)-(1.7) has the 
form 

E(t,x)= * " * r ( t . , x  ) = y (7.3) 

This solution is guaranteed by the two strategies (7.1) and (7.2). 

Remark 3. As in [3], we have the identity 7"2 -ffi Tz whenever 0°or 0 ° = z. This means that problem (1.1)-(1.7) 
turns into a game with fixed final time T = TI = T2 and terminal functional. In these cases, as above and in 
[10, 11], singular scadar manifolds of type $1 (a focal surface) and type $2 (a dispersive surface) will appear in 
[to, t*). It can be shcnvn that in these cases strategies (7.1) and (7.2) will also be optimal and will guarantee the 
result of the game (1.1)--(1.7) to be equal to (7.3). 

8. CONSTRUCTION OF THE SET OF POSITIONS OF THE OBJECT E 
(El)  FROM WHICH IT CANNOT ESCAPE THE PU R SU E R  P FOR FIXED 

VALUES OF THE PARAMETERS OF BOTH OBJECTS 

Let the values of the parameters V1, R1 of P and Vi, Ri, 0 ° (i = 2, 3) o rE  andE1 be given. We recall 
that according to (1.2) and (1.5) these values of the parameters are equal for E and El. We assume 
that a situation of covering is realized in the game, and so the CC are satisfied for the given parameter 
values. We fix t = 171 arbitrarily. 

It is required to determine the positions (x °, y/0) (i = 1, 2) of E and El at to = 0 belonging to the set 
of positions K from which E (or El) cannot avoid being caught by P in the game (1.1)-(1.7). 

We put 

y* = Ri[(V l - V i cosO°) / V/] 2 / (21sin O°l) (8.1) 

It follows from (8.1) that the initial coordinate y0 of E (El) satisfies the inequality 

0 
Yi ~ Y* (8.2) 

As has been shown above, up to t =/ '1 the attainability domains ofP, E andE1 turn out to be straight 
line interva~A.;Bi orthogonal to the vectors ni = ViT1 (i = 1, 2, 3), respectively. In accordance with the 
situation of covering at t = 1"1 the coordinates of the extreme points of the attainability domains of P 
and E (or El) coincide 

xl(Ti)= xi(Tl), yl(Ti)= yi(T~) (8.3) 

where / = 2 or 3 depending on the given value of 0 °. 
Using the CC, we can determine (x°,y/°) at to = 0 for anyy ° satisfying (8.2), as described in [3]. 
By varying the initial value y°/between 0 andy* one can construct a curve K (Fig. 4) representing the 

set of initial positions of E (E 0 from which E (or El) cannot escape the pursuer P in the game (1.1)-(1.7). 
We introduce the notation 

a=(Vi2cosO°i)/(2Ri)-Vi2/(2Rt), b = V/sin0 ° 
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It can be shown that the desired curve K is descn3~ed by the following equations depending on the given 
value of 0 ° 

x(y) : -aTl 2 - bT I (: or x(y): aT2 2 - bT 2 ) (8.4) 

where 0 ~< y ~< y* and Tj (/: I, 2) can be computed according to [3] separately for each y. 

9. C O N S T R U C T I O N  OF THE DOMAIN OF I N I T I A L  P O S I T I O N S  OF E 
(E l )  FROM WHICH E (OR El )  CANNOT ESCAPE T H E  P U R S U E R  P 

Let the following parameters of E and E 1 be given: the velocities ~ ,  the radius of curvature Ri of the 
trajectory and the angle O ° between the velocity vector Vi and the OY axis (i -- 2, 3), for example, 0 ~< 
0~ < rj2. We recall that according to (1.2)-(1.5) the parameters and initial positions of E and E1 as 
well as the values 0 ° (i = 1, 2) coincide. 

For any initial coordinate y0 t> 0 of E and El, using (1.8) from the CC, we specify the velocity Vv 
Depending on the angle 0 ° from (1.9) or (1.10) we can determine the maximum possible radius of 
curvature R1 of the trajectory of P, which will be denoted by R~  ax. We introduce the notation 

a* =(V~2 cosO°)/ (2Ri)- V~ 2 / (2R~ma~), b *  =V~sinO ° 

where i is equal to two or three depending on which of the objects E or E1 remains in the game for 
t>t*. 

From the procedure for constructing the curve K in Section 8 we can draw the following conclusion. 
If the initial position of E and El in the "one against two" game belongs to the domain bounded by the 
linesy = y* andy : 0 lying to the left of the curvex(y) = --a*T12-b*Tl (or x(y) = a*T 2-b-T2), where 
0 ~< y ~< y*, then the pursuit--evasion game of "one against one" results in the capture of E (or El). 
Otherwise E (or El) avoids being captured in the "one against one" game. This domain is the desired 
domain of initial positions of E and El, in which E (or El) c~tnnot avoid being captured by P. In Fig. 4 
such a domain is presented for Vi : 2, R i = 3, V 1 : 6 and O~ : ~6. 

It can be shown that the domain consists of a bundle of curves K constructed for various values of 
RI from the interval 0 ~< R1 ~< R1 max. Curve K corresponding to R1 = R1 max is the left boundary of the 
desired domain of initial positions of E and E1 (Fig. 4). 

Similar domains of initial positions of E and E1 can be constructed for other values of 0 °. 

Remark 4. On the basis of the results of this paper one can solve the problem of constructing a positional strategy 
or the evader remaining in the "one against two" pursuit-evasion game which guarantees that the evader will stay 
away from the pursuer by a given distance and arrive in a prescribed set in which the game terminates. 
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