CONSTRUCTION OF OPTIMAL POSITION STRATEGIES IN A DIFFERENTIAL PURSUIT-EVASION GAME WITH ONE PURSUER AND TWO EVADERS \dagger

K. A. ZEMSKOV and A. G. PASHKOV

Moscow
(Received 2 May 1996)
The game-theoretic pursuit-evasion problem of one pursuer and two evaders is considered. It is assumed that one of the evaders must leave the game (disappear) at some time; however, neither this time nor the leaving evader is known in advance. The dynamics of all the objects can be described by the equations of the well-known Isaacs problem of the "game of two cars" [1] subject to conditions of restricted manoeuvrability of the objects. The minimum time difference between the pursuer and the evader remaining in the game is the payoff of the game. Under certain assumptions, relating the parameters of the objects and their initial positions, the optimal position strategies for the pursuer and two evaders are constructed. The formal description of the problem follows that considered in [2]. The approach proposed in [3] is developed. Similar problems were considered in [10-16]. © 1997 Elsevier Science Ltd. All rights reserved.

1. EQUATIONS OF MOTION AND PAYOFF FUNCTIONAL

Suppose that objects P (the pursuer) and E and E_{1} (the evaders) move with constant velocity in the $X O Y$ plane (Fig. 1). The equations of motion of the objects and the constraints on their control interactions resemble those in the well-known problem of "the game of two cars" [1] and have the form

$$
\begin{equation*}
\dot{x}_{i}=V_{i} \sin \theta_{i}, \quad \dot{y}_{i}=V_{i} \cos \theta_{i}, \quad \dot{\theta}_{i}=\left(V_{i} / R_{i}\right) \varphi_{i}, \quad\left|\varphi_{i}\right| \leqslant 1 \tag{1.1}
\end{equation*}
$$

Here V_{i} is the constant velocity, R_{i} is the minimum radius of curvature of the trajectory, θ_{i} is the angle between the $O Y$ axis and the vector V_{i}, φ_{i} is the scalar control function, C_{i} is the centre of curvature of the trajectory, and $i=1$ corresponds to $P, i=2$ to E and $i=3$ to E_{1}.

It is assumed that

$$
\begin{equation*}
V_{2}=V_{3}, \quad R_{2}=R_{3} \tag{1.2}
\end{equation*}
$$

We will assume that the following restricted manoeuvrability condition is satisfied for system (1.1) ($\delta \theta_{i}$ being sufficiently small)

$$
\begin{equation*}
\theta_{i}=\theta_{i}^{0}+\delta \theta_{i} \tag{1.3}
\end{equation*}
$$

where θ_{i}^{0} is the value of θ_{i} at the initial instant of time $t=t_{0}$.
Under this assumption, P, E and E_{1} will move according to the system of linear equations

$$
\begin{array}{ll}
\dot{x}_{i}=V_{i}\left(\sin \theta_{i}^{0}+z_{i} \cos \theta_{i}^{0}\right), & \dot{y}_{i}=V_{i}\left(\cos \theta_{i}^{0}-z_{i} \sin \theta_{i}^{0}\right) \tag{1.4}\\
\dot{z}_{i}=\left(V_{i} / R_{i}\right) \varphi_{i}, & \left|\varphi_{i}\right| \leqslant 1
\end{array} \quad\left(z_{i}=\delta \theta_{i}\right)
$$

The game is considered in a time interval $\left[t_{0}, T\right]$, where T is not fixed and, in particular, can be infinite. The initial positions of P, E and E_{1} are given by the vectors $\left\{x_{i}^{0}, y_{i}^{0}, z_{i}^{0}\right\}(i=1,2,3)$. We will assume that

$$
\begin{equation*}
x_{2}^{0}=x_{3}^{0}, \quad y_{2}^{0}=y_{3}^{0}, \quad \theta_{2}^{0}=\theta_{3}^{0} \tag{1.5}
\end{equation*}
$$

Fig. 1.
when $t=t_{0}$.
It is assumed that one of the evaders (it is unknown in advance which one) suddenly disappears from the game at an instant of time $t=t^{*}$ unknown in advance, where $t_{0} \leqslant t^{*}<T$. Starting from this time a pursuit-evasion game between the pursuer and the remaining evader begins. The time t^{*} is a parameter of the problem under consideration. The solution of the problem depends explicitly on t^{*}, which is reflected in (7.1)-(7.3).

The basic payoff functional is given by

$$
\begin{equation*}
\gamma_{1}=\min _{i<l<T}\left\{\left[x_{i}(t)-x_{1}(t)\right]^{2}+\left[y_{i}(t)-y_{1}(t)\right]^{2}\right\}^{1 / 2} \tag{1.6}
\end{equation*}
$$

The intermediate functional in the initial game has the form

$$
\begin{align*}
& \gamma_{2}=\max \left\{\left|x_{k}\left(T_{1}\right)-x_{1}\left(T_{1}\right)\right|,\left|x_{i}\left(T_{2}\right)-x_{1}\left(T_{2}\right)\right|\right\} \tag{1.7}\\
& y_{k}\left(T_{1}\right)=y_{1}\left(T_{1}\right), \quad y_{l}\left(T_{2}\right)=y_{1}\left(T_{2}\right)
\end{align*}
$$

where k and l can take only the following two pairs of values depending on the initial positions of E and E_{1} and on θ_{i}^{0} : either $k=2, l=3$ or $k=3, l=2$.

In (1.6) i is equal to two or three depending on which of the evaders disappears from the game at $t=t^{*}$ (it is either equal to two if E remains in the game or to three if E_{1} remains). In (1.7) the times $T=T_{j}(j=1,2)$ are defined according to [3] as the instants of contact between the extreme points $x_{i}\left(T_{j}\right)(i=2, j=1 ; i=3, j=2$ or $i=2, j=2 ; i=3, j=1)$ of the attainability domains of E and E_{1} and the straight lines $y=y_{1}\left(T_{1}\right)$ and $y=y_{1}\left(T_{2}\right)$, respectively. It is assumed that the attainability domains of E and E_{1} correspond to $T=T_{j}(j=1,2)$.

It is also assumed that the relations between $V_{i}, R_{i}, \theta_{i}^{0}(i=1,2,3)$ satisfy the covering conditions from [3] of the form

$$
\begin{gather*}
V_{1} \geqslant V_{2}\left(\cos \theta_{i}^{0}+\sqrt{2 y_{2}^{0}\left|\sin \theta_{i}^{0}\right| / R_{2}}\right) \tag{1.8}\\
V_{1}^{2}\left(V_{2} \cos \theta_{i}^{0}-V_{1}\right) / R_{1}+V_{2}^{2}\left(V_{1} \cos \theta_{i}^{0}-V_{2}\right) / R_{2} \leqslant 0 \tag{1.9}
\end{gather*}
$$

if $0 \leqslant \theta_{i}^{0} \leqslant \pi / 2$ or $3 \pi / 2<\theta_{i}^{0} \leqslant 2 \pi$

$$
\begin{equation*}
V_{1}^{2}\left(V_{2} \cos \theta_{i}^{0}-V_{1}\right) / R_{1}+V_{2}^{2}\left(V_{2}-V_{1} \cos \theta_{i}^{0}\right) / R_{2} \leqslant 0 \tag{1.10}
\end{equation*}
$$

if $\pi / 2 \leqslant \theta_{i}^{0} \leqslant 3 \pi / 2$.
The pursuer P aims to minimize the basic and auxiliary functionals γ_{1} and γ_{2}, while the evaders try to maximize them.

2. FORMULATION OF THE PROBLEM

For the differential game (1.1)-(1.7) in which the parameters of P, E and E_{1} satisfy the covering conditions (CC) (1.8)-(1.10), it is required to construct optimal positional strategies $U=U(t, X \cdot, Y$., $\left.Z_{*}\right):\left[t_{0}, T\right] \times R^{3} \times R^{3} \times R^{3} \rightarrow\left\{\varphi_{1}\right\}$ for the pursuer P and $V_{i}=V_{i}\left(t, X \cdot, Y_{*}, Z.\right):\left[t_{0}, T\right] \times R^{3} \times R^{3} \times$ $R^{3} \rightarrow\left\{\varphi_{1}\right\}(i=2,3)$ for the evaders E and E_{1}, which realize a saddle point of the game in the sense of the functional (1.6).
Here $X_{\bullet}=\left\{x_{1}, y_{1}, z_{1}\right\}, Y_{\bullet}=\left\{x_{2}, y_{2}, z_{2}\right\}, Z_{.}=\left\{x_{3}, y_{3}, z_{3}\right\},\left\{\varphi_{i}\right\}=\left\{\varphi_{i} \in R^{1}:\left|\varphi_{i}\right| \leqslant 1\right\}(i=1,2,3)$.
Remark 1 . The strategy of one of the evaders will be determined only in the interval $\left[t_{0}, t^{*}\right)$ according to the setting of the problem. However, as will be shown below, the choice of the strategy for each of the two evaders in [t_{0}, t^{*}) will have a significant effect on the value of γ_{1}.

Remark 2. In (1.1)-(2.7) the condition for a saddle point to exist in a "little game" [2] is satisfied.

3. AUXILIARY CONSTRUCTIONS. CHANGE OF COORDINATES. ATTAINABILITY DOMAINS

To simplify the constructions below we will change the reference system as in [3], placing the origin at the initial position of P and directing the $O Y$ axis along the velocity vector of P and the $O X$ axis to the right of \mathbf{V}_{1}. The positions of E and E_{1} (which coincide at $t=t_{0}$) are given by a vector $\left(x_{i}^{*}, y_{i}^{*}, \theta_{i}^{*}\right)$ in the new reference system, where the components of the vector can be computed by means of formulae (4.1) in [3]. In what follows, for simplicity we shall omit the asterisk on the symbols for the actual positions of the objects and replace the symbols for the control functions $\varphi_{i}(i=1,2,3)$ by u for P, and by v and ν_{1} for E and E_{1}, respectively.

In the new reference system the equations of motion (1.4) of P, E and E_{1} take the form

$$
\begin{align*}
& \dot{x}_{1}=V_{1} z_{1}, \quad \dot{y}_{1}=V_{1}, \quad \dot{z}_{1}=\left(V_{1} / R_{1}\right) u, \quad|u| \leqslant 1 \tag{3.1}\\
& \dot{x}_{i}=V_{2}\left(\sin \theta_{i}^{0}+z_{i} \cos \theta_{i}^{0}\right), \quad \dot{y}_{i}=V_{2}\left(\cos \theta_{i}^{0}-z_{i} \sin \theta_{i}^{0}\right) \tag{3.2}\\
& \dot{z}_{i}=\left(V_{2} / R_{2}\right) v_{i}, \quad\left|v_{i}\right| \leqslant 1
\end{align*}
$$

Expressions (1.6) and (1.7) for the payoff functional remain unchanged. It was shown in [3, 4] that the attainability domains $G^{(i)}(t, T)$ of P, E and E_{1} will be rectilinear intervals $r_{i}(t, T)$ perpendicular to $\mathbf{V}_{i}(i=1,2,3)($ Fig. 2) with

$$
r_{i}(t, T)=\left(V_{i}(T-t)\right)^{2} /\left(2 R_{i}\right)
$$

Typical positions of P, E and E_{1} at the initial time $t=t_{0}$ and their attainability domains at a time $T>t_{0}$ are shown'in Fig. 2.
Assuming the control functions of P, E and E_{1} to be constant in the time interval $\left[t_{0}, T\right]$, we can integrate (3.1) and (3.2) and find the coordinates $\left(x_{i}, y_{i}, z_{i}\right)(i=1,2,3)$ of these objects when $t=T$ given that they are at positions $\left\{t_{0}, x_{i}^{0}, y_{i}^{0}, z_{i}^{0}\right\}$ respectively, at $t=t_{0}$. The corresponding values are given in [3] (formulae (5.3) and (5.4)).

4. CONDITIONS FOR COVERING THE ATTAINABILITY DOMAINS OF E AND E_{1} BY THE ATTAINABILITY DOMAIN OF P

According to (1.5), when $t=t_{0}$ the positions of the two evaders E and E_{1} coincide at the point $\left\{t_{0}, x_{2}^{0}, y_{2}^{0}, z_{2}^{0}\right\}=\left\{t_{0}, x_{3}^{0}, y_{3}^{0}, z_{3}^{0}\right\}$. Suppose that P is at $\left\{t_{1}, x_{1}, y_{1}, z_{1}\right\}$ at time $t=t_{1}$, where $t_{0}<t_{1} \leqslant t^{*}$, while E and E_{1} are at $\left\{t_{1}, x_{2}, y_{2}, z_{2}\right\}$ and $\left\{t_{1}, x_{3}, y_{3}, z_{3}\right\}$, respectively.

For these positions we consider the attainability domains of P, E and E_{1} at times $T_{1}>t_{1}$ and $T_{2}>$ t_{1} corresponding to an arbitrary value of θ_{i}^{0}, where $0<\theta_{i}^{0}<\pi / 2$.

We denote the extreme points of the attainability domains of P, E and E_{1} corresponding to the control interactions $u= \pm: 1, v= \pm 1, v_{1}= \pm 1$ and times $T=T_{j}(j=1,2)$ by $A_{1}\left(T_{j}\right), B_{1}\left(T_{j}\right) ; A_{2}\left(T_{j}\right), B_{2}\left(T_{j}\right)$ and $A_{3}\left(T_{j}\right), B_{3}\left(T_{j}\right)$ respectively (Fig. 3).

Fig. 2.

Fig. 3.

Suppose that for $T=T_{1}$ the geometric coordinates of one of the extreme points of the attainability domain of E_{1}, for example, $A_{2}\left(T_{1}\right)\left\{x_{2}\left(T_{1}\right), y_{2}\left(T_{1}\right)\right\}$ lie on the straight line $y=y_{1}\left(T_{1}\right)$ and the inequality

$$
\begin{equation*}
x_{2}\left(T_{1}\right)-x_{1}\left(T_{1}\right) \leqslant 0 \tag{4.1}
\end{equation*}
$$

holds, where $x_{2}\left(T_{1}\right)$ is the abscissa of the point $A_{2}\left(T_{1}\right)$ in the attainability domain of E_{1} and $x_{1}\left(T_{1}\right)$ is the abscissa of the point $A_{1}\left(T_{1}\right)$ in the attainability domain of P closest to $A_{2}\left(T_{1}\right)$.

Next, suppose that an extreme point $B_{3}\left(T_{2}\right)=\left\{x_{3}\left(T_{2}\right), y_{3}\left(T_{2}\right)\right\}$ of the attainability domain of E belongs to the straight line $y=y_{1}\left(T_{2}\right)$ at $T=T_{2}$ (Fig. 3) and the inequality

$$
\begin{equation*}
x_{3}\left(T_{2}\right)-x_{1}\left(T_{2}\right) \geqslant 0 \tag{4.2}
\end{equation*}
$$

holds, where $x_{3}\left(T_{2}\right)$ is the abscissa of the point $B_{3}\left(T_{2}\right)$ in the attainability domain of E and $B_{1}\left(T_{2}\right)$ is the abscissa of the point $B_{3}\left(T_{2}\right)$ in the attainability domain of P closest to $B_{3}\left(T_{2}\right)$.

We shall assume that at least one of inequalities (4.1) and (4.2) is strict.
Such a configuration of the attainability domains of P, E and E_{1} at $T=T_{1}$ and $T=T_{2}$ whose positions at $t=t_{1}$ are given above will be referred to as a situation of covering the attainability domain of P by those of E and E_{1} in a "one against two" game. The conditions relating the parameters of P, E and E_{1} for which the attainability domains realize a "situation of covering" will be called the covering conditions ($C C$) in a "one against two" game. These conditions are similar to the $C C$ in [3] and have the form (1.8)-(1.10).

5. AUXILIARY PROBLEM 1

We will first consider the problem of constructing an optimal positional strategy (OPS) of P, E and E_{1} on $\left[t_{0}, t^{*}\right)$ whose payoff functional is given by (1.6).

Formulation of the Auxiliary Problem 1. For the differential game (1.1)-(1.6) in which the parameters and the initial positions of P, E and E_{1} satisfy the $C C$ in a "one against two" game we need to construct the OPS

$$
U^{1}=U^{1}\left(t, X_{*}, Y_{*}, Z_{*}\right):\left[t_{0}, t^{*}\right) \times R^{3} \times R^{3} \times R^{3} \rightarrow\left\{\varphi_{1}\right\}
$$

of the pursuer P and the OPSs

$$
V_{i}^{1}=V_{i}^{1}\left(t, X_{*}, Y_{*}, Z_{*}\right):\left[t_{0}, t^{*}\right) \times R^{3} \times R^{3} \times R^{3} \rightarrow\left\{\varphi_{1}\right\} \quad(i=2,3)
$$

of the evaders E and E_{1} in a time interval $\left[t_{0}, t^{*}\right)$, where $t=t^{*}$ is unknown in advance, which realize a saddle point in the game (1.1)-(1.5), (1.7).

From the definition of a situation of covering for P, E and E_{1} it follows that for some position $\{t, X$, $\left.Y_{*}, Z \cdot\right\}$ of the game (1.1)-(1.6) for which the $C C$ are satisfied, the following inequalities hold, relating the ordinates of the points of the attainability domains

$$
\begin{equation*}
y_{1}\left(T_{1}\right)=y_{k}\left(T_{1}\right), \quad y_{1}\left(T_{2}\right)=y_{l}\left(T_{2}\right) \tag{5.1}
\end{equation*}
$$

where either $k=2, l=3$ or $k=3, l=2$, so $T_{j}(j=1,2)$ is satisfied according to [3].
It can be shown that only the x coordinates $x_{i}\left(T_{j}\right)(i=1,2,3 ; j=1,2)$ of the extreme points of the attainability domains of P, E and E_{1} at the times $T=T_{j}(j=1,2)$ when these points lie on the straight lines $y=y_{1}\left(T_{j}\right)(j=1,2)$ are important for constructing the strategies U^{1} and $V_{i}^{1}(i=2,3)$.

We introduce the notation

$$
\begin{equation*}
s_{i}^{j}=s_{i}\left(t, T_{j}\right)=x_{i}\left(T_{j}\right)-x_{1}\left(T_{j}\right), \quad i=2,3 ; \quad j=1,2 \tag{5.2}
\end{equation*}
$$

Consider strategies $U^{1}=U^{1}\left(t, X_{\bullet}, Y_{\bullet}, Z_{*}\right)$ and $V_{i}^{1}=V_{i}^{\prime}\left(t, X_{\bullet}, Y_{\bullet}, Z_{\cdot}\right) \equiv V_{i}^{1}(t)$ of the form

$$
\left.\begin{array}{rl}
U^{1}\left(t, X_{*}, Y_{*}, Z_{*}\right) & =\left\{\begin{array}{l}
\operatorname{sign}\left(s_{k}^{1}+s_{l}^{2}\right), \quad \text { if } \quad\left|s_{k}^{1}\right| \neq\left|s_{l}^{2}\right| \\
{[-1,+1],}
\end{array} \text { if } \quad\left|s_{k}^{1}\right|=\left|s_{l}^{2}\right|\right.
\end{array}\right\} \begin{aligned}
& V_{i}^{1} \equiv V_{i}^{1}(t)=(-1)^{i}, \quad i=2,3, \quad t \in\left[t_{0}, t^{*}\right)
\end{aligned}
$$

where the subscripts k and l can only take the following two pairs of values depending on the initial position of E and E_{1} and the angle θ_{i}^{0} e either $k=2, l=3$ or $k=3, l=2$.

Now suppose that P, E and E_{1} in the auxiliary game (1.1)-(1.5), (1.7) move subject to the strategies (5.3) and (5.4). The positions of the game under consideration for $t_{0} \leqslant t \leqslant t^{*}$ such that

$$
\begin{equation*}
s_{k}^{1}=-s_{l}^{2} \tag{5.5}
\end{equation*}
$$

form a focal surface S_{1} similar to that considered in [10, 11]. The functional γ_{2} may increase as P moves on S_{1}. However, it can be shown that the strategy $U^{1}(t, X \cdot, Y \cdot, Z \cdot)$ defined by (5.3) guarantees that this growth will be the slowest possible. Those positions of the game (1.1)-(1.5), (1.7) for which (5.5) is not satisfied belong to the regular domain of the game under consideration. It can be shown that the programming strategies given by (5.4) are the desired optimal strategies of E and E_{1} in $\left[t_{0}, t^{*}\right.$). This follows from the fact that the strategies (5.4) for any admissible strategies of P lead to the quickest violation of the situation of covering in a "one against two" game and provide the maximum of γ_{2} with respect to $V_{i}(i=2,3)$.

Taking the above discussion into account and analysing how the attainability domains of P, E and E_{1} change with time under the strategies U^{1} and $V_{i}^{1}(i=2,3)$, it can be shown that strategies (5.3) and (5.4) provide a solution of Auxiliary Problem 1 and satisfy the equality

$$
\begin{equation*}
\max _{\nu_{2}, V_{3}} \min _{U^{1}} \gamma_{2}=\min _{U^{1}} \max _{\nu_{2}^{\prime}, V_{3}} \gamma_{2}=\gamma_{2}^{*} \tag{5.6}
\end{equation*}
$$

6. AUXILIARY PROBLEM 2

At $t=t^{*}$ the game (1.1)-(1.5), (1.7) turns into a pursuit-evasion game (1.1)-(1.6) between the pursuer and the evader remaining in the game (E or E_{1}).

We introduce the notation

$$
\begin{equation*}
\varepsilon_{1}(t, x)=s_{k}\left(t, T_{1}\right), \quad \varepsilon_{2}(t, x)=s_{l}\left(t, T_{2}\right) \tag{6.1}
\end{equation*}
$$

where $x=\left\{X_{\cdot}, Y_{\cdot}, Z_{.}\right\}$and, as in (5.3), the subscripts k and l can take only two pairs of values depending
on the initial positions of E and E_{1} and on $k=2, l=3$: either θ_{i}^{0} or $k=3, l=2$.
Let $x^{*}=\left\{X^{*}, Y^{*} ., Z^{*} \cdot\right\}$ be the coordinates of P, E and E_{1} at the time $t=t^{*}$ of termination of the auxiliary game 1 and let $T=T_{j}(j=1,2)$ in (6.1) be computed for the position $\left\{t^{*}, x^{*}\right\}$ in accordance with [3]. It can be shown that the strategies (5.3) and (5.4) in the game (1.1)-(1.6) ensure that

$$
\begin{equation*}
\varepsilon_{1}\left(t^{*}, x^{*}\right)=\varepsilon_{2}\left(t^{*}, x^{*}\right)=\gamma_{2}^{*} \tag{6.2}
\end{equation*}
$$

Formulation of Auxiliary Problem 2. For the differential game (1.1)-(1.6) in which the initial positions of P and E (or E_{1}) coincide with the final positions of P, E and E_{1} at $t=t^{*}$ we need to construct in $\left[t^{*}, T\right)$ an OPS

$$
U^{2}=U^{2}\left(t, X_{*}, x_{i}, y_{i}, z_{i}\right):\left[t^{*}, T\right) \times R^{3} \times R^{3} \rightarrow\left\{\varphi_{1}\right\}
$$

of the pursuer P and a positional strategy

$$
V_{i}^{2}=V_{i}^{2}\left(t, X_{*}, x_{i}, y_{i}, z_{i}\right):\left[t^{*}, T\right) \times R^{3} \times R^{3} \rightarrow\left\{\varphi_{i}\right\}
$$

of the evader remaining in the game ($i=2$ if E remains in the game and $i=3$ if E_{1} remains) providing a saddle point in the game (1.1)-(1.6).
For $t=t^{*}$ the game (1.1)-(1.5), (1.7) turns into problem (1.1)-(1.6) with one pursuer P and one evader E or E_{1}, considered in [3]. In this game the strategy of the remaining evader (E or E_{1}) must be a positional strategy, because such a strategy guarantees the best result for the evader and enables it to "punish" the pursuer for any deviations from its optimal strategy.
As in the construction of the OPS (5.3) and (5.4) for P, E and E_{1} in Auxiliary Problem 1 it can be shown that the desired positional strategies of P and $E\left(E_{1}\right)$ in Auxiliary Problem 2 have the form

$$
\begin{align*}
& U^{2}\left(t, X_{*}, x_{i}, y_{i}, z_{i}\right)= \begin{cases}\operatorname{sign}\left(s_{i}^{1}+s_{i}^{2}\right), & \text { if } \\
\left|s_{i}^{1}\right| \neq\left|s_{i}^{2}\right| \\
{[-1,+1],} & \text { if } \\
\left|s_{i}^{1}\right|=\left|s_{i}^{2}\right|\end{cases} \tag{6.3}\\
& v_{i}^{2}\left(t, X_{*}, x_{i}, y_{i}, z_{i}\right)=\left\{\begin{array}{lll}
(-1)^{q} \operatorname{sign}\left(s_{i}^{1}+s_{i}^{2}\right), & \text { if } & \left|s_{i}^{1}\right| \neq\left|s_{i}^{2}\right| \\
{[-1,+1],} & \text { if } & \left|s_{i}^{1}\right|=\left|s_{i}^{2}\right|
\end{array}\right. \tag{6.4}
\end{align*}
$$

In (6.3) and (6.4) $i=2$ if E remains in the game and $i=3$ if E_{1} remains. In (6.4) $q=2$ if $0 \leqslant \theta_{i}^{0}<\pi / 2$ or $3 \pi / 2<\theta_{i}^{0} \leqslant 2 \pi$ and $q=1$ if $\pi / 2<\theta_{i}^{0} \leqslant 3 \pi / 2$.
We assume that $P, E\left(E_{1}\right)$ move, respectively, according to the strategies U^{2} and V_{i}^{2} in the interval $\left[t^{*}, T\right)$. The positions of the game (1.1)-(1.6) for which the equality

$$
\begin{equation*}
\left|s_{i}^{2}\right|=\left|s_{i}^{3}\right| \tag{6.5}
\end{equation*}
$$

holds for $t^{*} \leqslant t<T$ from a singular set S_{2}, which is a dispersive surface.
Auxiliary Problem 2 was solved in [3]. It can be shown that

$$
\begin{equation*}
\max _{y_{i}^{2}} \min _{U^{2}} \gamma_{1}=\min _{U^{2}} \max _{v_{i}^{2}} \gamma_{1}=\gamma_{i}^{*} \tag{6.6}
\end{equation*}
$$

holds for Auxiliary Game 2. From the solution of this problem it follows that U^{2} and V_{i}^{2} guarantee that the result γ_{1}^{*} of the game will be

$$
\begin{equation*}
\gamma_{1}^{*}=\gamma_{2}^{*}=\gamma^{*} \tag{6.7}
\end{equation*}
$$

7. OPTIMAL STRATEGIES OF P AND $E\left(E_{1}\right)$ IN THE ORIGINAL GAME

The positional strategies $U\left(t, X_{*}, Y_{*}, Z_{*}^{*}\right)$ and $V_{i}\left(t, X_{*}, Y_{*}, Z_{*}\right)(i=2$ or 3$)$ representing the solution of the original game (1.1)-(1.7) can be constructed on the basis of the solution of Auxiliary Problems 1 and 2 and have the form

$$
\begin{gather*}
U\left(t, X_{*}, Y_{*}, Z_{*}\right)=\left\{\begin{array}{l}
U^{\prime}\left(t, X_{*}, Y_{*}, Z_{*}\right) \text { for } t_{0} \leqslant t<i^{*} \\
U^{2}\left(t, X_{*}, x_{i}, y_{i}, z_{i}\right) \text { for } t^{*} \leqslant t<T
\end{array}\right. \tag{7.1}\\
V_{i}\left(t, X_{*}, Y_{*}, Z_{*}\right)=\left\{\begin{array}{l}
V_{i}^{1}(t) \text { for } t_{0} \leqslant t<t^{*}, \quad i=2,3 \\
V_{i}^{2}\left(t, X_{*}, x_{i}, y_{i}, z_{i}\right) \text { for } t^{*} \leqslant t<T, \quad i=2 \text { or } 3
\end{array}\right. \tag{7.2}
\end{gather*}
$$

where U^{m} and $V_{i}^{m}(m=1,2 ; i=2,3)$ are given by (5.3), (6.3) and (5.4), (6.4), respectively.
Suppose that for some position $\left\{t, X_{\cdot}, Y_{*}, Z_{*}\right\}=\{t, x\}$ of the game (1.1)-(1.7) the $C C$ are satisfied in the "one against two" game. We assume that P, E and E_{1} move according to strategies (7.1) and (7.2). Suppose that P, E and E_{1} are at positions $\left\{t^{*}, X^{*}, Y^{*} * Z^{*} \cdot\right\}=\left\{t^{*}, x^{*}\right\}$ at the time $t=t^{*}\left(t_{0} \leqslant\right.$ $t^{*}<T$) (unknown in advance) when one of the evaders (E or E_{1}) disappears from the game. Then it follows from (6.2) and (6.7) that the optimal solution $\varepsilon(t, x)$ of the original game (1.1)-(1.7) has the form

$$
\begin{equation*}
\varepsilon(t, x)=\varepsilon\left(t^{*}, x^{*}\right)=\gamma^{*} \tag{7.3}
\end{equation*}
$$

This solution is guaranteed by the two strategies (7.1) and (7.2).
Remark 3. As in [3], we have the identity $T_{2} \equiv T_{2}$ whenever θ_{i}^{0} or $\theta_{i}^{0}=\pi$. This means that problem (1.1)-(1.7) turns into a game with fixed final time $T=T_{1}=T_{2}$ and terminal functional. In these cases, as above and in [10, 11], singular scalar manifolds of type S_{1} (a focal surface) and type S_{2} (a dispersive surface) will appear in $\left[t_{0}, t^{*}\right)$. It can be shown that in these cases strategies (7.1) and (7.2) will also be optimal and will guarantee the result of the game (1.1)-(1.7) to be equal to (7.3).

8. CONS'TRUCTION OF THE SET OF POSITIONS OF THE OBJECT E (E_{1}) FROM WHICH IT CANNOT ESCAPE THE PURSUER P FOR FIXED values of the parameters of both objects

Let the values of the parameters V_{1}, R_{1} of P and $V_{i}, R_{i}, \theta_{i}^{0}(i=2,3)$ of E and E_{1} be given. We recall that according to (1.2) and (1.5) these values of the parameters are equal for E and E_{1}. We assume that a situation of covering is realized in the game, and so the $C C$ are satisfied for the given parameter values. We fix $t=T_{1}$ arbitrarily.

It is required to determine the positions $\left(x_{i}^{0}, y_{i}^{0}\right)(i=1,2)$ of E and E_{1} at $t_{0}=0$ belonging to the set of positions K from which E (or E_{1}) cannot avoid being caught by P in the game (1.1)-(1.7).

We put

$$
\begin{equation*}
y^{*}=R_{i}\left[\left(V_{1}-V_{i} \cos \theta_{i}^{0}\right) / V_{i}\right]^{2} /\left(2 \mid \sin \theta_{i}^{0} 1\right) \tag{8.1}
\end{equation*}
$$

It follows from (8.1) that the initial coordinate y_{i}^{0} of $E\left(E_{1}\right)$ satisfies the inequality

$$
\begin{equation*}
y_{i}^{0} \leqslant y^{*} \tag{8.2}
\end{equation*}
$$

As has been shown above, up to $t=T_{1}$ the attainability domains of P, E and E_{1} turn out to be straight line intervals $A_{i} B_{i}$ orthogonal to the vectors $n_{i}=V_{i} T_{1}(i=1,2,3)$, respectively. In accordance with the situation of covering at $t=T_{1}$ the coordinates of the extreme points of the attainability domains of P and E (or E_{1}) coincide

$$
\begin{equation*}
x_{1}\left(T_{1}\right)=x_{i}\left(T_{1}\right), \quad y_{1}\left(T_{1}\right)=y_{i}\left(T_{1}\right) \tag{8.3}
\end{equation*}
$$

where $i=2$ or 3 depending on the given value of θ_{i}^{0}.
Using the $C C$, we can determine (x_{i}^{0}, y_{i}^{0}) at $t_{0}=0$ for any y_{i}^{0} satisfying (8.2), as described in [3].
By varying the initial value y_{i}^{0} between 0 and y^{*} one can construct a curve K (Fig. 4) representing the set of initial positions of $E\left(E_{1}\right)$ from which E (or E_{1}) cannot escape the pursuer P in the game (1.1)-(1.7).

We introduce the notation

$$
a=\left(V_{i}^{2} \cos \theta_{i}^{0}\right) /\left(2 R_{i}\right)-V_{i}^{2} /\left(2 R_{1}\right), \quad b=V_{i} \sin \theta_{i}^{0}
$$

It can be shown that the desired curve K is described by the following equations depending on the given value of $\boldsymbol{\theta}_{\boldsymbol{i}}^{\boldsymbol{i}}$

$$
\begin{equation*}
x(y)=-a T_{1}^{2}-b T_{1} \quad\left(\text { or } x(y)=a T_{2}^{2}-b T_{2}\right) \tag{8.4}
\end{equation*}
$$

where $0 \leqslant y \leqslant y^{*}$ and $T_{j}(j=1,2)$ can be computed according to [3] separately for each y.

9. CONSTRUCTION OF THE DOMAIN OF INITIAL POSITIONS OF E (E_{1}) FROM WHICH E (OR E_{1}) CANNOT ESCAPE THE PURSUER P

Let the following parameters of E and E_{1} be given: the velocities V_{i}, the radius of curvature R_{i} of the trajectory and the angle θ_{i}^{0} between the velocity vector V_{i} and the $O Y$ axis ($i=2,3$), for example, $0 \leqslant$ $\theta_{i}^{0}<\pi / 2$. We recall that according to (1.2)-(1.5) the parameters and initial positions of E and E_{1} as well as the values $\theta_{i}^{0}(i=1,2)$ coincide.

For any initial coordinate $y_{i}^{0} \geqslant 0$ of E and E_{1}, using (1.8) from the $C C$, we specify the velocity V_{1}. Depending on the angle θ_{i}^{0} from (1.9) or (1.10) we can determine the maximum possible radius of curvature R_{1} of the trajectory of P, which will be denoted by $R_{1}^{\max }$. We introduce the notation

$$
a^{*}=\left(V_{i}^{2} \cos \theta_{i}^{0}\right) /\left(2 R_{i}\right)-V_{1}^{2} /\left(2 R_{1}^{\max }\right), \quad b^{*}=V_{i} \sin \theta_{i}^{0}
$$

where i is equal to two or three depending on which of the objects E or E_{1} remains in the game for $t>t^{*}$.

From the procedure for constructing the curve K in Section 8 we can draw the following conclusion. If the initial position of E and E_{1} in the "one against two" game belongs to the domain bounded by the lines $y=y^{*}$ and $y=0$ lying to the left of the curve $x(y)=-a^{*} T_{1}^{2}-b^{*} T_{1}\left(\right.$ or $\left.x(y)=a^{*} T_{2}^{2}-b^{*} T_{2}\right)$, where $0 \leqslant y \leqslant y^{*}$, then the pursuit-evasion game of "one against one" results in the capture of E (or E_{1}). Otherwise E (or E_{1}) avoids being captured in the "one against one" game. This domain is the desired domain of initial positions of E and E_{1}, in which E (or E_{1}) cannot avoid being captured by P. In Fig. 4 such a domain is presented for $V_{i}=2, R_{i}=3, V_{1}=6$ and $\theta_{i}^{0}=\pi / 6$.

It can be shown that the domain consists of a bundle of curves K constructed for various values of R_{1} from the interval $0 \leqslant R_{1} \leqslant R_{1}{ }^{\max }$. Curve K corresponding to $R_{1}=R_{1}{ }^{\max }$ is the left boundary of the desired domain of initial positions of E and E_{1} (Fig. 4).

Similar domains of initial positions of E and E_{1} can be constructed for other values of θ_{i}^{0}.
Remark 4. On the basis of the results of this paper one can solve the problem of constructing a positional strategy or the evader remaining in the "one against two" pursuit-evasion game which guarantees that the evader will stay away from the pursuer by a given distance and arrive in a prescribed set in which the game terminates.

Fig. 4.

This research was supported financially by the Russian Foundation for Basic Research (95-01-01089).

REFERENCES

1. ISAACS, R., Differential Games: A Mathematical Theory with Applications to. Warfare and Pursuit, Control and Optimization. Wiley, New York, 1965.
2. KRASOVSKII, N. N. and SUBBOTIN, A. 1., Positional Differential Games. Nauka, Moscow, 1974.
3. ZEMSKOV, K. A.. and PASHKOV, A. G., A pursuit-evasion game involving two controlled objects with restricted maneuverability. Prikd. Mat. Mekh., 1993, 57, 3, 23-33.
4. PASHKOV, A. G., A comparison of the solutions of linear and non-linear differential pursuit games. Prikl. Mat. Mekh., 1986, 50, 4, 551-560.
5. PASHKOV, A. G., An estimate of the guaranteed result in a non-linear differential pursuit game. Prikl. Mat. Mekh., 1990 , 54, 5, 760-766.
6. PASHKOV, A. G., Methods of estimating optimal result functions in some pursuit problems. Izv. Ross. Akad. Nauk. Tekhn. Kibernetika, 1993, 1, 164-168.
7. PASHKOV, A. G. and ZEMSKOV, K. A., Construction of optimal positional strategies in a pursuit-evasion differential game with one pursuer and two evaders. In Prepr. 6th Internat. Symp. on Dynamic Games and Applications. St-Jovite, Quebec, Canada, 1994.
8. PASHKOV, A. G., SYNITSYN, A. V. and ZEMSKOV, K. A., The solution of game problems in dynamics. In Abstracts of the 3rd Int. Congr. on Industrial and Applied Mathematics. Hamburg, Germany, 1995.
9. PASHKOV, A. G., SYNITSYN, A. V. and ZEMSKOV, K. A., Construction of optimal solution in some pursuit-evasion differential games of several players. In Abstracts of the 17th IFIP TC7 Conf. on System Modelling and Optimization. Prague, Czech Republic, 1995, Vol. 1, pp. 129-131.
10. LEVCHENKOV, A. Y. and PASHKOV, A. G., Differential game of optimal approach of two inertial pursuers to noninertial evader. J. Optimiz. Theory and Appl., 1990, 65, 3, 501-518.
11. BREAKWELL, J. V. and HAGEDORN, P., Point capture of two evaders in succession. J. Optimiz. Theory and Appl, 1979, 27, 1, 89-97.
12. OLSDER, G. J. and BREAKWELL, J. V., Role determination in an aerial dog-fight. Int. J. Game Theory, 1974, 3, 1, 47-66.
13. COCAYNE, E., Plane pursuit with curvature constraints. SLAM J. Appl. Math, 1967, 15, 6, 1511-1516.
14. GREENFELD, I., A differential game of surveillance evasion of two identical cars. J. Optimiz. Theory and Appl., 1987, 52, 1, 53-79.
15. BOROWKO, P. and RZYMOWSKI, W., On the game of two cars. J. Optimiz. Theory and Appl., 1984, 44, 3, 381-396.
16. MAREC, J. and NGUYEN VAN NHAN, Two-dimensional pursuit evasion game with penalty on turning rates. J. Optimiz. Theory and Appl., 1977, 23, 2, 305-345.
