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CONSTRUCTION OF OPTIMAL POSITION STRATEGIES
IN A DIFFERENTIAL PURSUIT-EVASION GAME
WITH ONE PURSUER AND TWO EVADERSY
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The game-theoretic pursuit—evasion problem of one pursuer and two evaders is considered. It is assumed that one of the evaders
must leave the game (disappear) at some time; however, neither this time nor the leaving evader is known in advance. The dynamics
of all the objects can be described by the equations of the well-known Isaacs problem of the “game of two cars” [1] subject to
conditions of restricted manoeuvrability of the objects. The minimum time difference between the pursuer and the evader
remaining in the game is the payoff of the game. Under certain assumptions, relating the parameters of the objects and their
initial positions, the optimal position strategies for the pursuer and two evaders are constructed. The formal description of the
problem follows that considered in [2]. The approach proposed in {3] is developed. Similar problems were considered in [10-16].
© 1997 Elsevier Science Ltd. All rights reserved.

1. EQUATIONS OF MOTION AND PAYOFF FUNCTIONAL

Suppose that objects P (the pursuer) and E and E, (the evaders) move with constant velocity in the
XOY plane (Fig. 1). The equations of motion of the abjects and the constraints on their control
interactions resemble those in the well-known problem of “the game of two cars” [1] and have the
form

% =V;sin@;, y,=Vicos8;, 6 =(V,/R)p;, lgi<I 1.1)

Here V; is the constant velocity, R; is the minimum radius of curvature of the trajectory, 6; is the angle
between the OY axis and the vector V;, ¢; is the scalar control function, C; is the centre of curvature of
the trajectory, and i = 1 corresponds to P,i = 2to Eand i = 3 to E,.

It is assumed that

Va=V;, Ry=Rs 1.2)

We will assume that the following restricted manoeuvrability condition is satisfied for system (1.1)
(80; being sufficiently small)

8; =6} +56; (13)

where 0% is the value of 6; at the initial instant of time ¢ = £,
Under this assumption, P, E and E; will move according to the system of linear equations

%; = Vi(sin®? + z;cos8?),  y; = V;(cos@? - z;5in6)

4 =(V;/IR)9;, lpjl<1l (z=86))

(1.4)

The game is considered in a time interval [¢o, T], where T is not fixed and, in particular, can be infinite.
The initial positions of P, E and E, are given by the vectors {x,y% z% (i = 1, 2, 3). We will assume that

B=x3, yi=), 0}=6} (1.5)
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when ¢ = ¢,

It is assumed that one of the evaders (it is unknown in advance which one) suddenly disappears from
the game at an instant of time ¢ =t* unknown in advance, where 7 < ¢* < T. Starting from this time a
pursuit-evasion game between the pursuer and the remaining evader begins. The time ¢* is a parameter
of the problem under consideration. The solution of the problem depends explicitly on ¢*, which is
reflected in (7.1)-(7.3).

The basic payoff functional is given by

Y= min {{x,()-xOF +DO-nOFH (16)

The intermediate functional in the initial game has the form

Y2 = max{lx (1) = x (T 1x(T2) - x ()i} (1.7)
(My=nm)  y»(h)=y(Mh)

where k and / can take only the following two pairs of values depending on the initial positions of E
andElandonG eitherk=2,l=30rk =3,1=2.

In (1.6) i is equal to two or three depending on which of the evaders disappears from the game at
t=1¢* (it is either equal to two if E remains in the game or to three if E; remains). In (1.7) the times
T =T;(j = 1, 2) are defined according to [3] as the instants of contact between the extreme points
WT)i=2j=1i=3j=20ri=2j=2i=3,j= 1) of the attainability domains of E and E,

and the straight linesy = y;(T;) and y = y,(T>), respectively. It is assumed that the attainability domains
of E and E; correspond to T =T; (j =

It is also assumed that the relatxons between V, R;, 6% (i = 1, 2, 3) satisfy the covering conditions

from [3] of the form
V> V2(cose?+\/m ) (18)
VZ(V; cos8? — Vi) / R, + VZ(V;cos8) —V,) /I R, <0 (1.9
ifo<el<n2or3n2<e?<2n
V2(V, cos8? — V) / R + V2 (V, —V,cos8?)/ Ry <0 (1.10)
ifn2=<60%<3mn/2

The pursuer P aims to minimize the basic and auxiliary functionals y; and v,, while the evaders try
to maximize them.
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2. FORMULATION OF THE PROBLEM

For the differential game (1.1)-(1.7) in which the parameters of P, E and E; satisfy the covering
conditions (C: ‘(3 (1.8)-(1. 10), it is required to construct optimal positional strategies U = U(t, X, Y,
Z.): [te, T) X x R® - {¢,} for the pursuer P and V; = V{t, X+, Ys, Z.): [to, T] R} x R® x
R > {9} (i = 2, 3) for the evaders E and E;, which realize a saddle point of the game in the sense of
the functional (1.6).

Here X» = {x1,y1, 21}, Y+ = {03, 3, 25}, Z+ = {x3, y3, z3}, {9} = {q; € R:|o|<1}(@i=123).

Remark 1. The strategy of one of the evaders will be determined only in the interval [#y, £*) according to the
setting of the problem. However, as will be shown below, the choice of the strategy for each of the two evaders in
[te, £*) will have a significant effect on the value of ;.

Remark 2. In (1.1)~(2.7) the condition for a saddle point to exist in a “little game” [2] is satisfied.

3. AUXILIARY CONSTRUCTIONS. CHANGE OF COORDINATES.
ATTAINABILITY DOMAINS

To simplify the constructions below we will change the reference system as in [3), placing the origin
at the initial position of P and directing the OY axis along the velocity vector of P and the OX axis to
the right of V;. The positions of E and E, (which coincide at ¢ = 1) are given by a vector (x%, y%, 6%) in
the new reference system, where the components of the vector can be computed by means of formulae
(4.1) in [3]. In what follows, for simplicity we shall omit the asterisk on the symbols for the actual positions
of the objects and replace the symbols for the control functions @; (i = 1, 2, 3) by « for P, and by v and
v; for E and E;, respectively.

In the new reference system the equations of motion (1.4) of P, E and E; take the form

x=Wg, »=% z=(V/R)u, lu=l (3.1)
% = Vy(sin®? +z;c0s0%), ¥ = V,(cos8? —z;5in6) (3.2)
=,/ R)v,;, i<l

Expressions (1.6) and (1. 7) for the payoff functional remain unchanged. It was shown in [3, 4] that
the attainability domains GO(t, T) of P, E and E, will be rectilinear intervals r{t, T) perpendicular to
V; (i = 1, 2, 3) (Fig. 2) with

r(t,T)= (VT - 1))* 1 (2R))

Typical positions of P, E and E; at the initial time ¢ = #; and their attainability domains at a time
T > tg are shown'in Fig. 2.

Assuming the control functions of P, E and E; to be constant in the time interval [tg, 7], we can
integrate (3.1) and (3.2) and find the coordmates (x5 yi, 2;) ( = 1, 2, 3) of these objects whent =T
ngen that they are at positions {to, x3, y%, 2%} respectively, at ¢ = ¢,. The corresponding values are given
in [3] (formulae (5.3) and (5.4)).

4. CONDITIONS FOR COVERING THE ATTAINABILITY DOMAINS OF
E AND E, BY THE ATTAINABILITY DOMAIN OF P

According to (1.5), when ¢ = ¢, the positions of the two evaders E and E; coincide at the point
{to, 2%, % 2%} = {15,235, %, 23}. Suppose that P is at {t;, x,,y1, 2} at time ¢ = t;, where ty < 1; < t*, while
E and E, are at {t,, x5, y3, 2o} and {¢t1, x3, y3, 23}, respectively.

For these positions we consider the attamabll}ty domams of P, Eand E; attimes Ty > t;and T, >
1, corresponding to an arbitrary value of 6% where 0 < 6% < m/2.

We denote the extreme points of the attainability domams of P, E and E, corresponding to the control
interactionsu = 2:1,v = x1,v; = *1 and times T = T; (j = 1, 2) by A(T}), Bi(T}); Ax(T}), Bx(T}) and
As(T), By(T) respectlvely (F1g 3).
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Fig. 2. Fig. 3.

Suppose that for T = T} the geometric coordinates of one of the extreme points of the attainability
domain of E, for example, A(T,) {x2(T), y»(T1)} lie on the straight line y = y;(T}) and the inequality

% () =x(H) <0 (4.1)

holds, where x,(T) is the abscissa of the point A,(T}) in the attainability domain of E; and x,(T) is the
abscissa of the point 4;(7}) in the attainability domain of P closest to Ax(T}).

Next, suppose that an extreme point B3(T3) = {x3(T3), y3(T3)} of the attainability domain of E belongs
to the straight line y = y(7,) at T = T, (Fig. 3) and the inequality

x3(TY-x(T) =0 4.2)

holds, where x3(T5) is the abscissa of the point B3(T5) in the attainability domain of E and B,(T5) is the
abscissa of the point B3(T3) in the attainability domain of P closest to By(T3).

We shall assume that at least one of inequalities (4.1) and (4.2) is strict.

Such a configuration of the attainability domains of P, E and E; at T = T; and T = T, whose positions
att = t; are given above will be referred to as a situation of covering the attainability domain of P by
those of E and E; in a “one against two” game. The conditions relating the parameters of P, E and E;
for which the attainability domains realize a “situation of covering” will be called the covering conditions
(CC) in a “one against two” game. These conditions are similar to the CC in [3] and have the form

(1.8)(1.10).

5. AUXILIARY PROBLEM 1
We will first consider the problem of constructing an optimal positional strategy (OPS) of P, E and
E; on [tg, t*) whose payoff functional is given by (1.6).

Formulation of the Auxiliary Problem 1. For the differential game (1.1)~(1.6) in which the parameters
and the initial positions of P, E and E, satisfy the CC in a “one against two” game we need to construct
the OPS

U'=U'"(t. X, Y., Z,): (15,8 )X R*XRPx R = {9,}
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of the pursuer P and the OPSs
VI=V(1,X,,Y.,Z): (15, )XRPXxR* xR > {9} (i=2,3)

of the evaders E and E, in a time interval [y, £*), where ¢ = ¢* is unknown in advance, which realize a
saddle point in the game (1.1)~(1.5), (1.7).

From the definition of a situation of covering for P, E and E, it follows that for some position {t, X,
Y., Z.} of the game (1.1)~(1.6) for which the CC are satisfied, the following inequalities hold, relating
the ordinates of the points of the attainability domains

Ny =y (), »(hL)=y(h) (CRY)

where either k = 2,/ =3 ork = 3,1 = 2,50 T} (j = 1, 2) is satisfied according to [3].

It can be shown that only the x coordmates x(T) (l =1, 2, 3;j = 1, 2) of the extreme points of the
attainability domains of P, E and E, at the times 7{ T;j=1,2) when these pomts lie on the straight
linesy = yy(T}) (j = 1, 2) are important for constructmg the strategies U and V' (i = 2, 3).

We mtroduce the notation

sl =5 T =x(T)-x(T)), i=23 j=12 (5.2)
Consider strategies U = U'(t, X., Y+, Z.) and V! = Vi(t, X., Y., Z.) = Vi(t) of the form

sign(sy +s7), if Ishl#1s?)
Ut X, Y., Z)= (5.3)
[-1,+1), if Isjl=Is}I

Visvi =1y, i=23, telt.t) (54)

where the subscripts k and / can only take the following two pairs of values depending on the initial posi-
tion of E and E, and the angle 6%: eitherk = 2,/ = 3ork = 3,1 =

Now suppose that P, E and E, in the auxiliary game (1. 1)—(1 5), (1 7) move subject to the strategies
(5.3) and (5.4). The positions of the game under consideration for ¢, < ¢ < ¢* such that

sh=—s? . (5.5)

form a focal surface §; similar to that considered in [10, 11] The functional y, may increase as P
moves on §;. However, it can be shown that the strategy U\, X., Y., Z.) defined by (5.3) guarantees
that this growth will be the slowest possible. Those positions of the game (1.1)«(1.5), (1.7) for which
(5.5) is not satisfied belong to the regular domain of the game under consideration. It can be shown
that the programming strategies given by (5.4) are the desired optimal strategies of E and E, in [t, t*).
This follows from the fact that the strategies (5.4) for any admissible strategies of P lead to the quickest
violation of the smxatlon of covering in a “one against two” game and provide the maximum of y, with
respect to V; (i = 2, 3).

Taking the above discussion into account and analysmg how the attainability domains of P, £ and E;
change with time under the strategies U' and V} (i = 2, 3), it can be shown that strategies (5.3) and
(5.4) provide a solution of Auxiliary Problem 1 and satisfy the equality

n} mm Y, = mm {/na‘z( Y2 =7, (5.6)

6. AUXILIARY PROBLEM 2

Att = ¢* the game (1.1)«1.5), (1.7) turns into a pursuit-evasion game (1.1)-(1.6) between the pursuer
and the evader remaining in the game (F or E;).
We introduce the notation

El(t,x)=sk(t,7i), 82(t,x)=S,(t,T2) (6-1)

where x = {X., Y., Z.} and, as in (5.3), the subscripts k and / can take only two pairs of values depending
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on the initial positions of E and E, and on k = 2,/ = 3: either %ork=3,1=

Letx* = {X., Y., Z".} be the coordinates of P, E and E; at the time ¢t = ¢* of termination of the
auxiliary game 1 and let T = T; (j = 1, 2) in (6.1) be computed for the position {r*, x*} in accordance
with [3]. It can be shown that the strategies (5.3) and (5.4) in the game (1.1)(1.6) ensure that

g x ) =e,0t"x")=y; (6.2)

Formulation of Auxiliary Problem 2. For the differential game (1.1)—(1.6) in which the initial positions
of P and E (or E,) coincide with the final positions of P, E and E; at ¢t = t* we need to construct in
[*, T) an OPS

U =Ut,X,,x,y,2) (. T)X R xR* = {¢)

of the pursuer P and a positional strategy

V2=V X, x,5,2) [, T)X R xR = {9}

of the evader remaining in the game (i = 2 if E remains in the game and i = 3 if E; remains) providing
a saddle point in the game (1.1)-(1.6).

Fort = t* the game (1.1)~(1.5), (1.7) turns into problem (1.1)-(1.6) with one pursuer P and one evader
E or E, considered in [3]. In this game the strategy of the remaining evader (E or E;) must be a positional
strategy, because such a strategy guarantees the best result for the evader and enables it to “punish”
the pursuer for any deviations from its optimal strategy.

As in the construction of the OPS (5.3) and (5.4) for P, E and E; in Auxiliary Problem 1 it can be
shown that the desired positional strategies of P and E (E,) in Auxiliary Problem 2 have the form

sign(s,!+s,-2), if |s,!l¢|s,-2l

Uz(t,X.,x,-,y,-,z;)= (6'3)
(-1,+1], if 1sli=ls}
(~=1)7sign(s} +s2),. if 15]1#1s?1

VAt Xeo x50 %) = (6.4)
[(-1,+1], if 1si=ls?i

8 .3) and (64) i = 2 if E remains in the game and i = 3 if E; remains. In (64) g = 2 if
0<6’<nRor3n2<6%<2nandq =1ifn/2 < 6% < 3m/2.
We assume that P, E (El) move, respectively, according to the strategies U2 and V% in the interval
[¢*, T). The positions of the game (1.1)~(1.6) for which the equality

PHETH (6.5)

holds for t* <t < T from a singular set S,, which is a dispersive surface.
Augxiliary Problem 2 was solved in [3]. It can be shown that

. = - = * 6.6
mgx minY, = min mgxy, =Y, (6.6)
holds for Auxiliary Game 2. From the solution of this problem it follows that U? and V' ? guarantee that
the result v} of the game will be

N=Y=y (6.7)

7. OPTIMAL STRATEGIES OF P AND E (E;) IN THE ORIGINAL GAME

The positional strategies U(t, X+, Y., Z.) and V(t, X+, Y., Z.) (i = 2 or 3) representing the solution
of the original game (1.1)~(1.7) can be constructed on the basis of the solution of Auxiliary Problems
1 and 2 and have the form
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U't,X,,%.,2,) for ty=<t<s’
U@ X..Y..2,)= (7.1)
UZ(I,X‘,xi,yi,Zi) fOI' ‘.SI<T

Vi) for y=<i<t”, i=23

2 « . (7.2)
Vo, Xa,x;,y,2;) for ¢ <t<T, i=2 or 3

Vi(t,X,,Y.,Z.)={

where U™ and V™; (m = 1, 2; i = 2, 3) are given by (5.3), (6.3) and (5.4), (6.4), respectively.

Suppose that for some position {¢, X, Y., Z.} = {¢,x} of the game (1.1)~(1.7) the CC are satisfied
in the “one against two” game. We assume that P, E and E; move according to strategies (7.1) and
(7.2). Suppose that P, E and E, are at positions {t*, X'+, Y*., Z*.} = {t*,x*} at the time ¢ = t* (f <
t* < T) (unknown in advance) when one of the evaders (E or E;) disappears from the game. Then it
follows from (6.2) and (6.7) that the optimal solution &(z, x) of the original game (1.1)~(1.7) has the
form

et x)=¢(t’,x")=v" (7.3)
This solution is guaranteed by the two strategies (7.1) and (7.2).

Remark 3. As in [3], we have the identity T, = T, whenever 8%or 6% = n. This means that problem (1.1)~(1.7)
turns into a game with fixed final time 7 = T; = T, and terminal functional. In these cases, as above and in
[10, 11}, singular scalar manifolds of type S; (a focal surface) and type S, (a dispersive surface) will appear in
[te» *)- It can be shown that in these cases strategies (7.1) and (7.2) will also be optimal and will guarantee the
result of the game (1.1)-(1.7) to be equal to (7.3).

8. CONSTRUCTION OF THE SET OF POSITIONS OF THE OBJECT E
(E,) FROM WHICH IT CANNOT ESCAPE THE PURSUER P FOR FIXED
VALUES OF THE PARAMETERS OF BOTH OBJECTS

Let the values of the parameters V;, R; of P and V;, R;, 6% (i = 2, 3) of E and E, be given. We recall
that according to (1.2) and (1.5) these values of the parameters are equal for E and E;. We assume
that a situation of covering is realized in the game, and so the CC are satisfied for the given parameter
values. We fix ¢ = T arbitrarily.

Itis reqmred to determine the positions (% y}) (i = 1, 2) of E and E; at #, = 0 belonging to the set
of positions K from which E (or E;) cannot avoid being caught by P in the game (1.1)-(1.7).

We put

y =RV, -V,cos8?)/ V,]? / (2Isin601) 8.1)
It follows from (8.1) that the initial coordinate y? of E (E,) satisfies the inequality
n<y 8.2)
As has been shown above, up to ¢ = T the attainability domains of P, E and E; turn out to be straight
line intervals A,B; orthogonal to the vectors n; = V;T (i = 1, 2, 3), respectively. In accordance with the
situation of covering at ¢ = T the coordinates of the extreme points of the attainability domains of P
and E (or E,) coincide

(M) =x(h),  y(G)=y(T) (83)

where i = 2 or 3 depending on the glven value of 6'.
Using the CC, we can determme &% yHatey =0 for any y? satisfying (8.2), as described in [3]
By varying the initial value y% between 0 and y* one can construct a curve K (Fig. 4) representing the
set of initial positions of E (E;) from which E (or E;) cannot escape the pursuer P in the game (1.1)—(1.7).
We introduce the notation

a=(V?cos0?)/(2R)~V?I(2R), b=V,sin8?
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Itcanbe shown that the desired curve X is described by the following equations depending on the glven
value of 6%

x(y)=~aT —=bT, (or x(y)=al} ~bT;) (84)

where 0 =y <y* and I; (j = 1, 2) can be computed according to separately for each y.
here 0 <y <y* and 7} (j = 1, 2) can be computed according to [3] separately for each y

9. CONSTRUCTION OF THE DOMAIN OF INITIAL POSITIONS OF E
(E,) FROM WHICH E (OR E;) CANNOT ESCAPE THE PURSUER P

Let the following parametcrs of E and E, be given: the velocities V;, the radius of curvature R; of the
tra]ectory and the angle 6% between the velocity vector V; and the OY axis (i = 2, 3), for example, 0=
0% < /2. We recall that accordmg to (1.2)—(1.5) the parameters and initial positions of E and E, as
well as the values 6% (i = 1,2) coincide.

For any initial coordmate y% = 0 of E and E,, using (1.8) from the CC, we specify the velocity V.
Depending on the angle 0% from (1.9) or (1. 10) we can determine the maximum possible radius of
curvature R, of the trajectory of P, which will be denoted by R{***. We introduce the notation

a" =(V2cos8?)/ (2R)-V2/2R™), b" =V,sin®?

where i is equal to two or three depending on which of the objects E or E; remains in the game for
t>*,

From the procedure for constructing the curve K in Section 8 we can draw the following conclusion.
If the initial position of E and E, in the “one against two” game belongs to the domain bounded by the
linesy = y* andy = 0 lying to the left of the curve x(y) = -a*T,2 - b*T, (orx(y) = a*T,>-b*T,), where
0 <y < y*, then the pursuit-evasion game of “one against one” results in the capture of E (or Ey).
Otherwise E (or E;) avoids being captured in the “one against one” game. This domain is the desired
domain of initial positions of £ and E;, in which E (or E,) cannot avoid being captured by P. In Fig. 4
such a domain is presented for V; = 2, R; = 3, V; = 6 and 6% = n/6.

It can be shown that the domam consists of a bundle of cutves K constructed for various values of
R, from the interval 0 < R; < R,"™. Curve K corresponding to R, = R;™* is the left boundary of the
desired domain of initial positions of E and E, (Fig. 4).

Similar domains of initial positions of E and E; can be constructed for other values of 6%,

Remark 4. On the basis of the results of this paper one can solve the problem of constructing a positional strategy
or the evader remaining in the “one against two” pursuit-evasion game which guarantees that the evader will stay
away from the pursuer by a given distance and arrive in a prescribed set in which the game terminates.

NN A T

N A

4 k4 4 Y 7 2

Fig. 4.
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